

February 26, 2020 ALMA Santa Marta

VI CURSO DE EGRESADOS DE ALMA "ACTIVIDAD FÍSICA, CAÍDAS Y FRACTURAS" SANTA MARTA, COLOMBIA

Del 25 al 28 de febrero de 2020

Falls in Older Adults Epidemiology, Prevalence, Assessment, Challenges, and Proposed approach

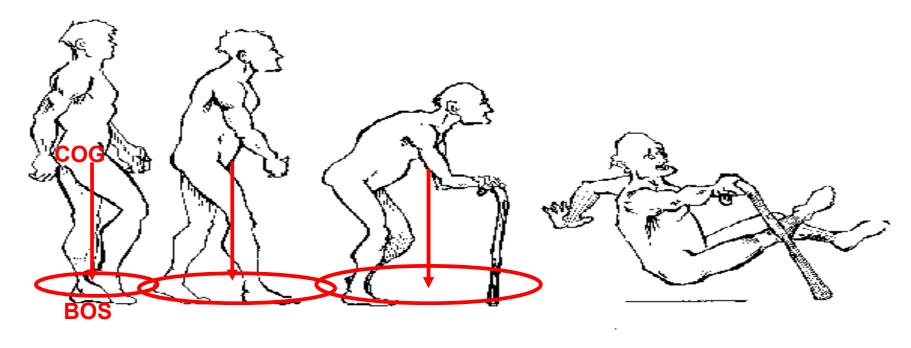
Manuel Montero-Odasso MD, PhD, AGSF, FRCPC

Professor, Departments of Medicine (Geriatrics), and Epidemiology and Biostatistics
Division of Geriatric Medicine, The University of Western Ontario
Director, Gait and Brain Lab, Parkwood Institute
Scientist, Lawson Health Research Institute, London ON

Sometimes it is easy to understand why we fall,

...but other times not

World Health Organisation defines a fall as:

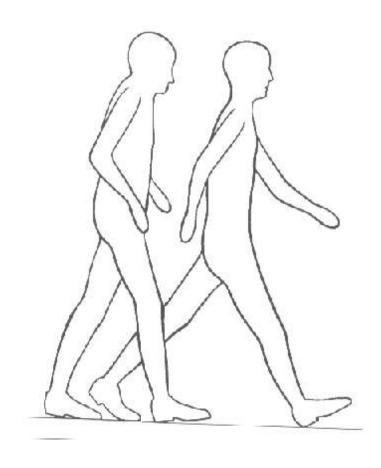

"An event which results in a person coming to rest inadvertently on the ground or floor or other lower level".

Excluded:

- major internal event e.g. stroke
- being hit by an external force e.g. knocked over

Why are we prone to fall?

- Most of the falls happen while walking
- The upright human body position is unstable



COG: center of gravity

BOS: base of support

Age-associated changes of posture and gait

- Forward flexion, head and torso
- Increased flexion, shoulders and knees
- Decreased stride length and arm swing
- Slower gait
- Increased lateral sway

Falls are prevalent

25% of elderly people have at least 1 fall per year 75% of fallers will fall again in the same year

Community Non- disabled	Community Disabled	In Hospital	Nursing Home	
15%	30%	40%	60%	

Falls are prevalent

25% of elderly people have at least 1 fall per year 75% of fallers will fall again in the same year

Community Non- disabled	Community Disabled	In Hospital	Nursing Home
15%	30%	40%	60%

Falls cause morbidity and mortality

Mortality

 FALLS accounts 70 percent of accidental deaths in older persons (they are the 5th cause of death in elderly persons)

Morbidity

- 20% Develop fear of falling
- 15% Have enough injury to visit Emergency Department due to pain, bruises, or dizziness
- 10% Have a severe injury non-fracture. e.g.: head injury, brain hemorrhages, chest trauma
- 5% Have a fracture (1% hip fracture)

Table 1. Frequent consequences of the fall syndrome in older people

Cause:	Consequence:
Medical	Head Trauma Cutaneous Haematoma Fracture Chronic Pain Death
Psychological	Fear of falling Anxiety Loss of confidence Depression
Social	Dependency Isolation Placement in long term care
Functional	Immobility Deconditioning Disability and dependence

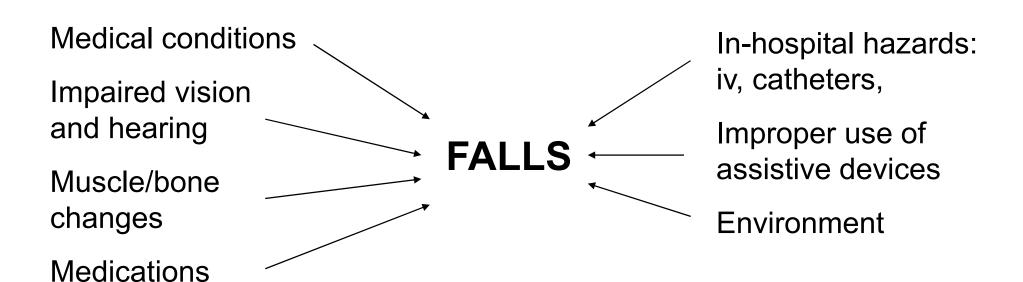
Consequences of falls

Not all falls lead to injuries

- 54% of community dwelling elderly experience fear of falling
- 38% associated avoidance of activity
- underreported because
 - most fearful elderly not included
 - and fear of stigmatization

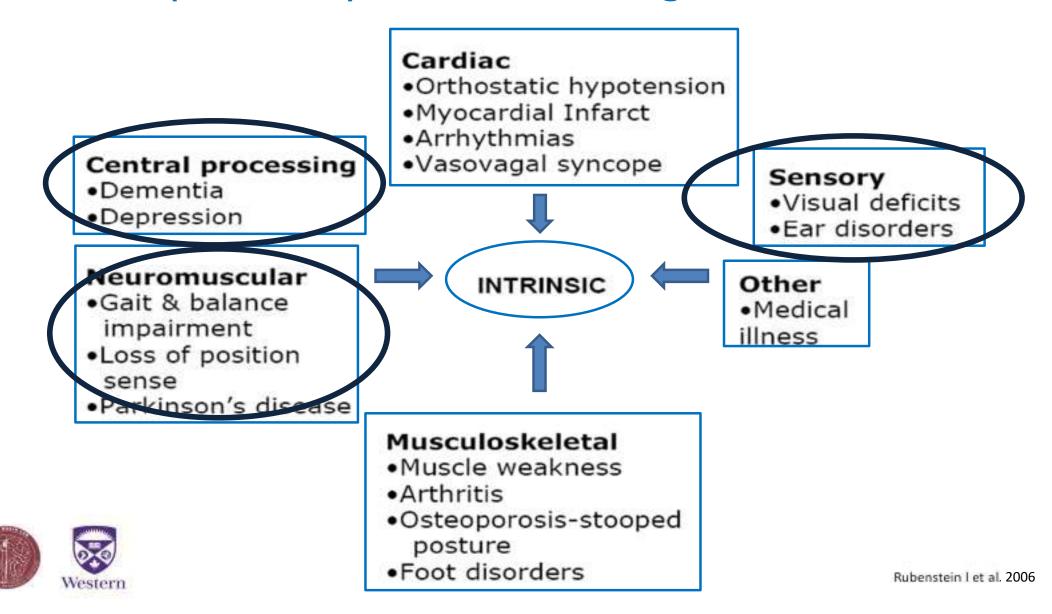
Fear of falling results in debilitating spiral of loss of confidence

- restricted activities & reduced physical fitness
- increased risk for future falls
- reduced functioning
- premature nursing home admissions



Falls are often multifactorial

Intrinsic Factors


Extrinsic Factors

Intrinsic (Personal) Factors Causing Falls

Extrinsic (Environmental) Factors

Obstacles/objects **Furniture** Pets - Clear glass tables - Clutter in walk way Low seats Cords in path - Chairs without arm support Drugs **Bathrooms** Low toilet seats **Extrinsic** Support surfaces - Slippery surfaces Uneven - Lack of grab bars - Slippery - Rugs Clothing Lighting Long skirts - Dim lights - Poor fitting - Glare on floor shoes, high Stairs No night lights heels No hand rails

The remainder of falls result from multiple interacting factors

 Falls result from "interactive" etiological factors, not simply from the additive effects of multiple pathologies

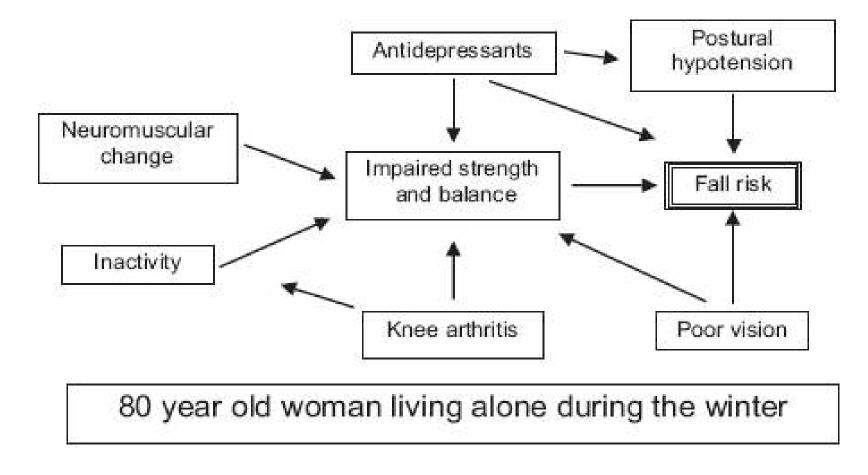


Figure 1. Interaction of risk factors predisposing to falls.

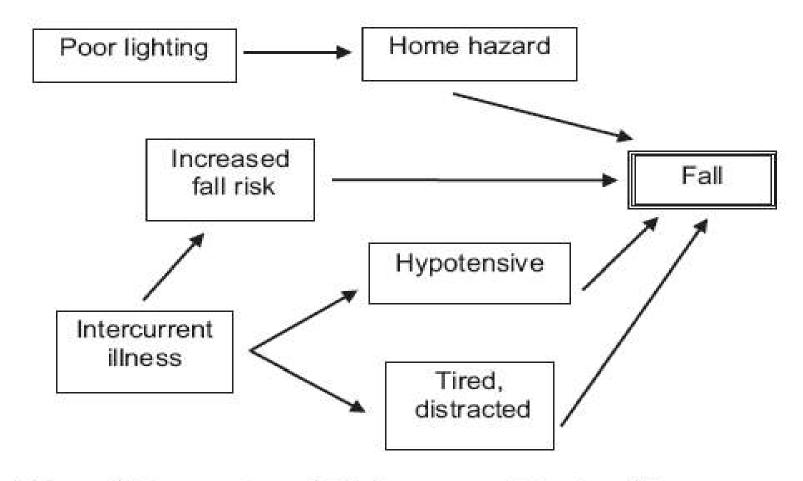


Figure 2. Interaction of risk factors precipitating falls.

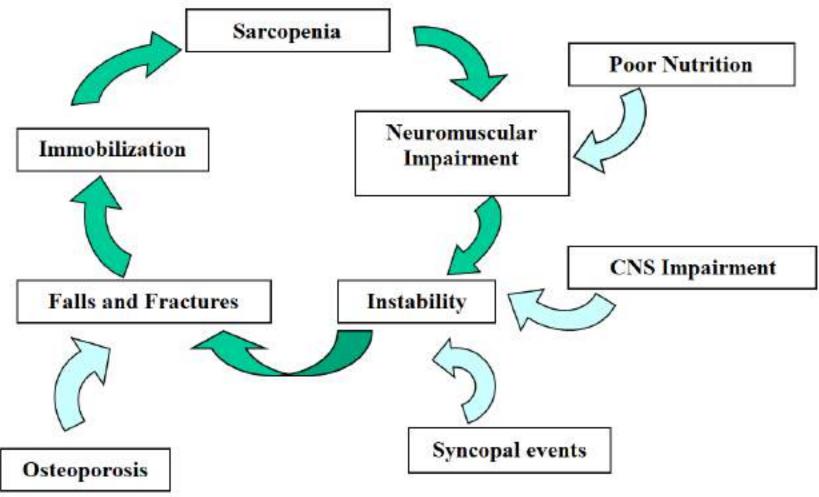


Figure 1. Vicious cycle in falls and fractures and principal contributors.

Why is important the risk factor assessment?

Table 2. Cause of falls according risk factor identification and grouped regarding potential management based on observational and clinical trials evidence.

Domain Assessed:	Risk Factor / Disease:	Level of evidence ^a	Screen/Assessment:	Management:
Neuromuscular	Parkinsonism syndrome Balance and gait problems Lower extremity weakness	Ia Ia Ia	Gait velocity test Get Up and Go POMA	1-Supervised programmes (structural gait retraining, balance, transfer and mobility interventions, progressive limb strengthening and flexibility exercises) 2-Provision of appropriate walking aids when needed 3-Vitamin D and calcium supplementation
Medical	Dizziness or vertigo Visual impairment Peripheral neuropathy Psychoactive medication/alcohol Hip problems or deformity Cognitive problems or depression	II Ib for cataracts, III for visual acuity n/a Ia n/a III	History and examination, incl. review of drugs, visual acuity assessment, echocardiograph, short Geriatric Depression Scale CAGE questionnaire	1-Appropriate investigation and management of untreated medical problems 2-Review and modification of psychotropic drugs, other culprit drugs, and polypharmacy. Alcohol counselling if indicated 3-Optical correction by an optician or referral to an ophthalmologist 4-Formal psychogeriatric assessment
Environmental	Environmental fall hazards Footwear Multifocal eyeglasses	Ia III II	Occupational therapy: assessment of environmental fall hazards using a standard checklist Check footwear	1-Home hazard modification using standard protocol 2-Advise to wear well-fitting shoes of low heel height and high surface contact 3-Avoid multifocal eyeglasses while walking
Cardiovascular	Orthostatic hypotension Postprandial hypotension Vasovagal syndrome Carotid sinus hypersensitivity	Ia Ib Ia Ib	Cardiac evaluation including heart rate, morning orthostatic blood pressure, and carotid sinus massage supine and tilted upright, prolonged head-up tilt, if indicated	1-Advice on avoiding precipitants and modification of drugs 2-Postural hypotension: compression hosiery, fludrocortisone, or midodrine 3-Cardioinhibitory carotid sinus hypersensitivity: permanent pacemaker 4-Symptomatic vasodepressor carotid sinus hypersensitivity or vasovagal syncope: fludrocortisone or midodrine

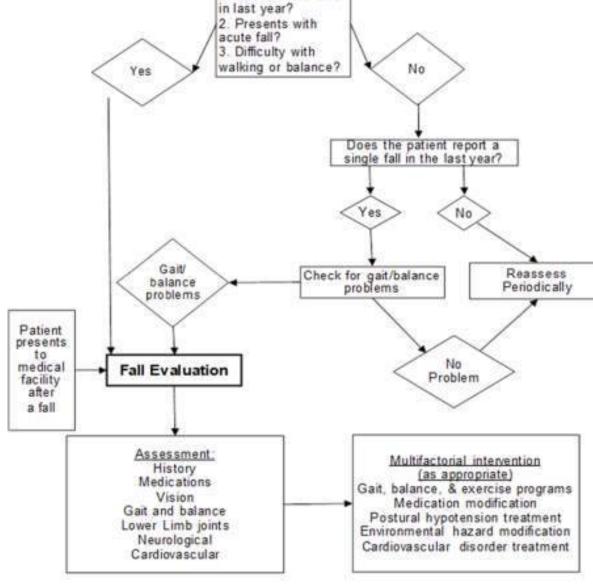
a)Level of evidence based on reference(81) as following: class Ia, evidence from at least 2 randomized controlled trials; Ib, evidence from 1 randomized controlled trial or meta-analysis of randomized controlled trials; II, evidence from at least 1 nonrandomized controlled trial or quasi-experimental study; III, evidence from prospective cohort study; IV, based on expert committee opinion or clinical experience in absence of other evidence

Who is at high risk of falling? Classic view

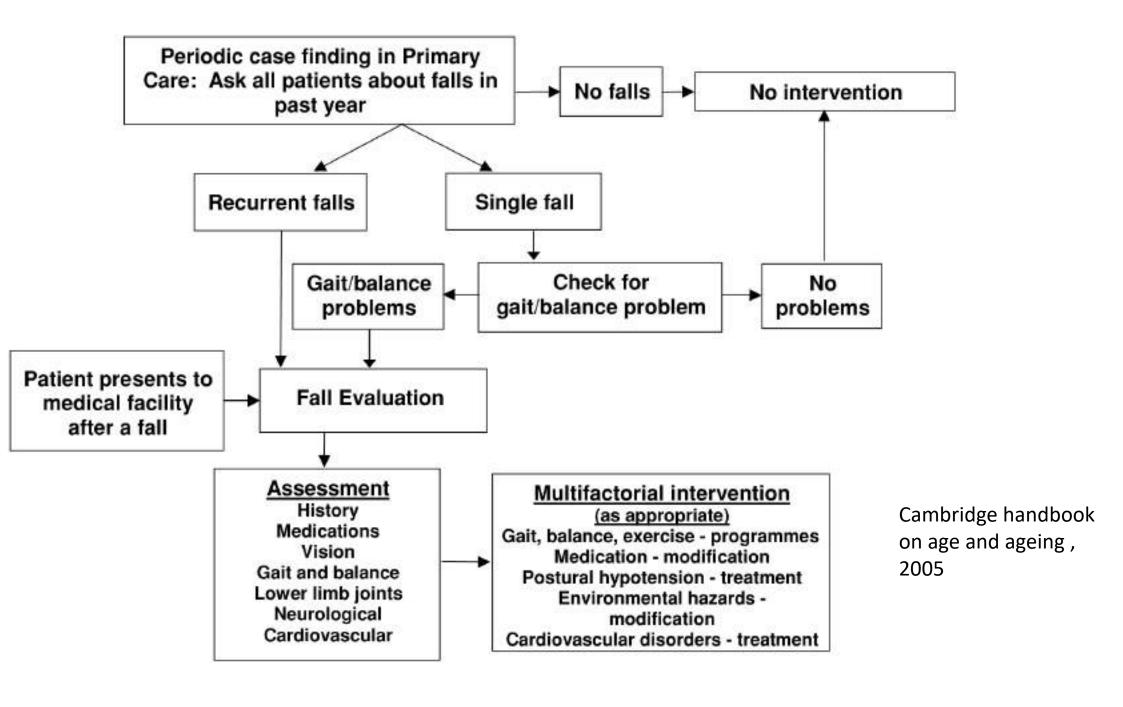
Who is at high risk of falling? Classic view

Community-dwelling older persons who...

- report at least 1 injurious fall
- report recurrent (two or more) non-injurious falls
- seek medical attention or present to the ED because of a fall
- report/display difficulties with gait or balance


... should have a multifactorial fall risk assessment

Who is at high risk of falling?


Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention(17). Used with permission of Blackwell Publishers.

Screening: 1. Two or more falls

Application of a Fall Screening Algorithm Stratified Fall Risk But Missed Preventive Opportunities in Community-Dwelling Older Adults: A Prospective Study

Susan W. Muir, PT, PhD¹; Katherine Berg, PT, PhD²; Bert Chesworth, PT, PhD³; Neil Klar, PhD¹; Mark Speechley PhD¹

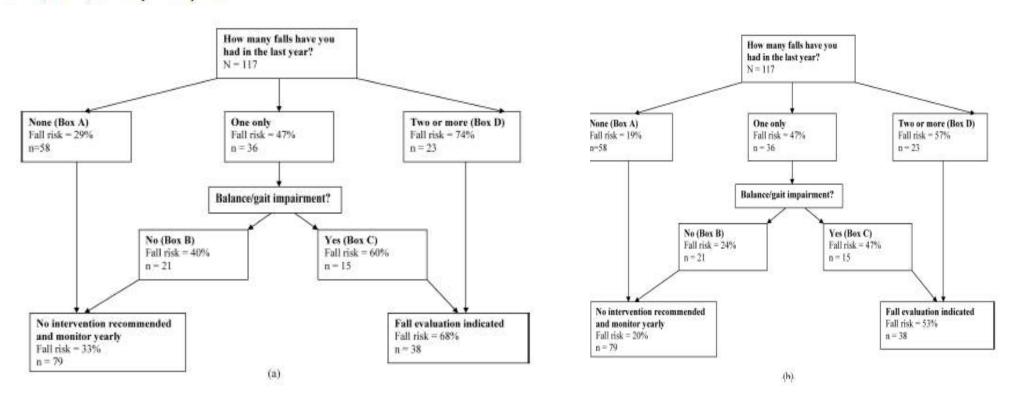


Figure 2. Flow chart showing fall risk values after the application of the AGS/BGS/AAOS fall risk screening algorithm in a sample of community-dwelling older adults for the outcomes of (a) any fall and (b) any injurious fall.

Our research on falls (n= 250, mean age75.27±7.24, female: 62%, 7 years follow up)

THOSE WHO DO NOT HAVE A FALLS HISTORY

1- They also fall (33% of them)

	No fall history (12 months)	Fall history (12 months)
No Fall during follow-up	114 (67%)	23 (33%)
Fall during follow-up	55 (33%)	47 (67%)
	169 (100%)	70 (100%)

2- These falls are not benign. 70% of falls provoke injury, regardless of NO presence of history of falls.

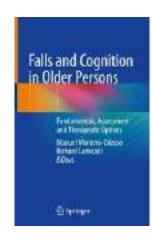
From the ones that fall	No fall history (12 months)	Fall history (12 months)	
Fall with NO injury during follow-up	15 (32%)	12 (30%)	
Fall with injury during follow-up	32 (68%)	28 (70%)	
	47 (100%)	40 (100%)	

Our research on falls (n= 250)

THOSE WHO DO NOT HAVE A FALLS HISTORY

3- 29% have normal gait speed, no fall history, and they still fall!

Proportion Slow Gait	No Fall history (12 months)			Fall history (12 months)		
	Gait ≥ 1m/s	Gait < 1m/s	p value	Gait ≥ 1m/s	Gait < 1m/s	
No Fall during follow-up	91 (71%)	23 (56%)	<0.001	17 (38%)	6 (24%)	0.022
Fall during follow-up	37 (29%)	18 (44%)*	0.010	28 (62%)	19 (76%)	0.189
	128 (100%)	41 (100%)		45 (100%)	25 (100%)	


^{*}those who fell during follow up and did not have previous history of falls

Mean Gait Speed	No Fall history (12 months)			Fall history (12 months)				
	Total gait speed	Gait ≥ 1m/s	Gait < 1m/s	p value	Total gait speed	Gait ≥ 1m/s	Gait < 1m/s	p value
No Fall during follow-up	115.0 (21.57)	122.63 (15.65)	84.79 (13.86)	p<0.001	112.57 (19.31)	121.50 (12.85)	87.24 (8.45)	p<0.001
Fall during follow-up	109.8 (24.05)	122.59 (16.04)	83.53 (14.33)	p<0.001	105.75 (21.03)	119.84 (13.22)	85.0 (10.23)	p<0.001
	p= 0.160				p= 0.196			

Who is at high risk of falling? Emerging view

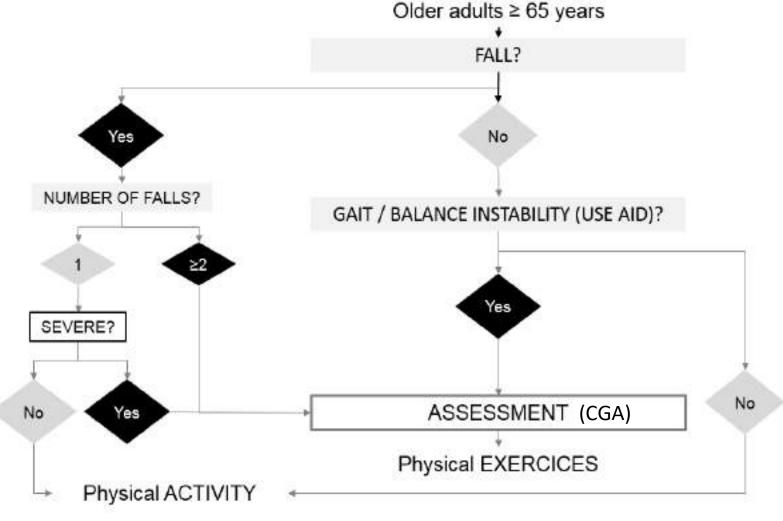


Figure 3. Proposed Algorithm for assessing falls risk

How are falls described?

- "Simple fall"
 - easily understood or done; presenting no difficulty
- "Accidental fall"
 - happening by chance, unintentionally, or unexpectedly.
- "Mechanical fall"
 - caused by, resulting from, or relating to a process that involves a <u>purely physical</u> as opposed to a chemical or biological change or process

What do we understand about what happens when someone falls

Most are unwitnessed, they occur quickly, patient report can be vague, and are related to an external perturbation or foot misplacement

What do we understand about what happens when someone falls

Falls in the Cognitively Impaired - Facts

- Falls are two-fold in people with Dementia¹⁻³
- Fallers with cognitive problems have
 - ↑ risk of injuries, falls & fractures
 - ↓ functional outcomes
 - ↓ access to rehabilitation
 - ↑ institutionalization
 - ↑ mortality
- Fall prevention is not successful in those with MMSE <20⁴

Evidence and Assumptions in Fall prevention

Evidence

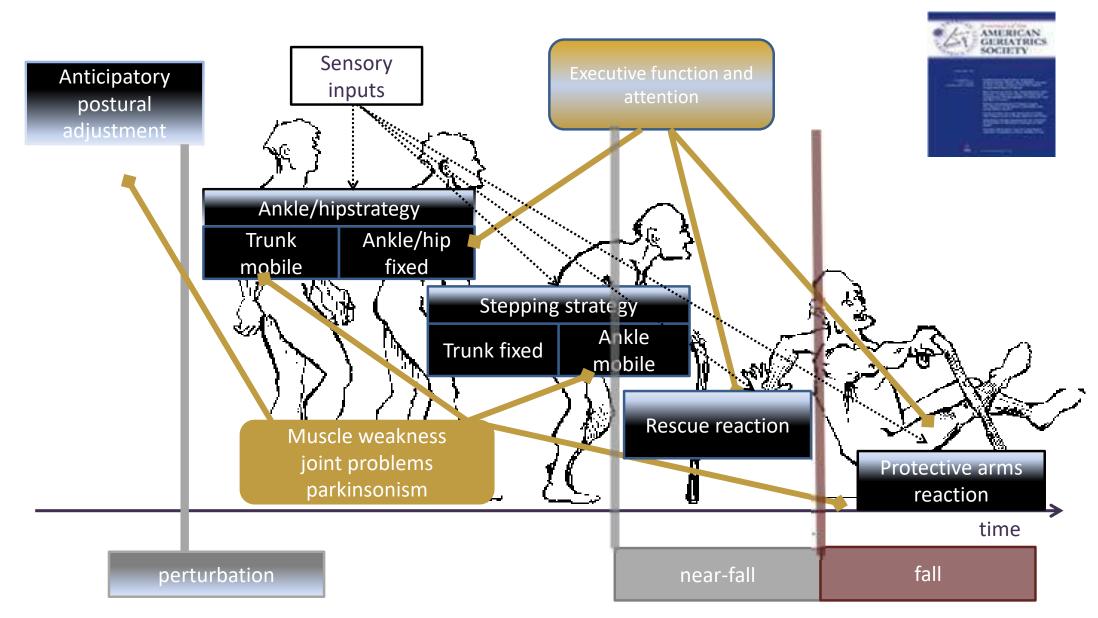
Cognitive impairment is a risk factor for falls

Assumption

Falls are not related to cognition when a "normal" global cognition (MMSE/MoCA) is present

SYSTEMATIC REVIEW

The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis

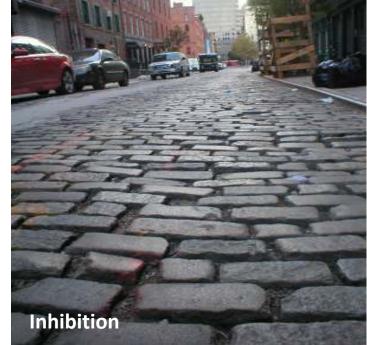

Susan W. Muir^{1,2}, Karen Gopaul², Manuel M. Montero Odasso^{1,2,3,4}

Fall Outcome	Odds Ratio(95% CI)	l ² (%)
Any fall	1.32 (1.18,1.49)	74.3%
Serious injury	2.33 (1.61,3.36)	5.9%
Fractures	1.78 (1.34,2.37)	0%
Any fall-low executive function	1.44 (1.20,1.83)	70.9%

Key points

- 1-Cognitive impairment (MMSE<26) confers high risk of serious injury from a fall **OR=2.33**
- 2- Executive dysfunction increases fall risk **OR=1.44**
- 3- Executive dysfunction can be present despite normality in "global cognition"
- 4- EF assessment should be part of a falls risk evaluation

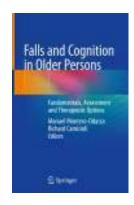
Montero-Odasso & Speechley. J Am Geritr Soc 2018



Walking is cognitively demanding!

Proposed approach for falls assessment and prevention

Two scenarios


No previous falls

- Screening (pretest probability:19-36%)
- Ask/asses for falls or gait/balance problems
- Gait domain offers the highest yield for screening
- If gait is normal → dual-task gait test?
 Other?
- Not screening of other domains (vision, orthostatic changes, cognition, medication) if only purpose is to determine risk of falls

Previous falls

- Higher risk of falling (pretest probability 25-65%)
- Gait and balance is also important
- If gait is normal, cardiovascular risk factors become important to rule out syncopal falls
- Stepped Fall assessment

Who is at high risk of falling? Emerging view

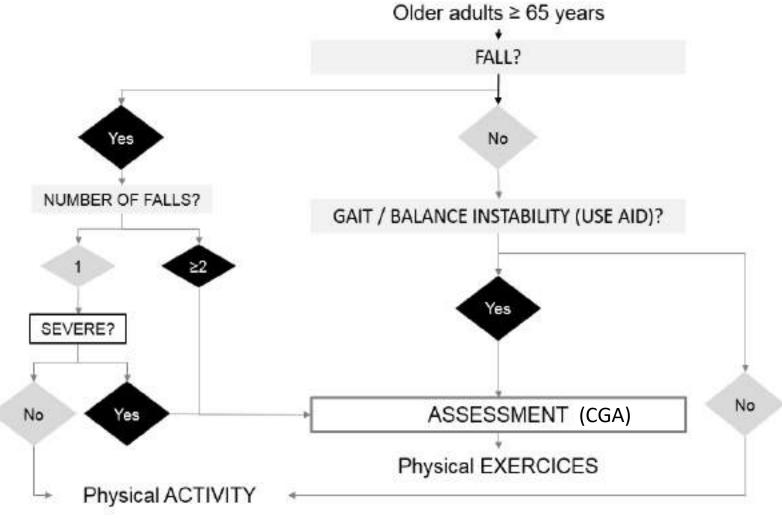
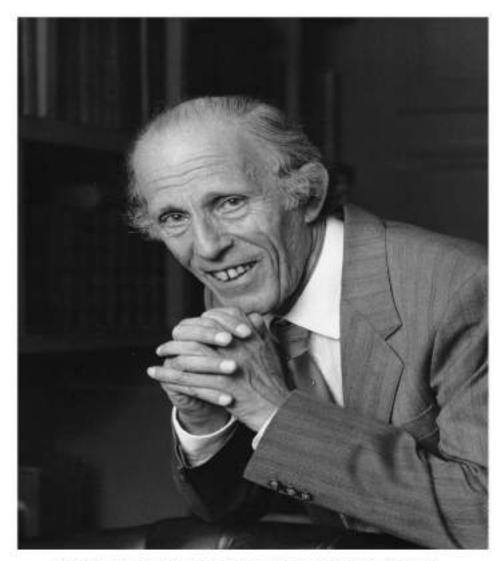


Figure 3. Proposed Algorithm for assessing falls risk

Conclusions


- Falls are multifactorial, and risk factors tend to aggregate and interact
- Current fall risk stratification misses up to 30% who will fall(Not bening falls = 70% have injuries)
- Screening needs to find way to detect this group
- Gait/balance is the domain that yield the highest probability to detect risk
- Cognition is key to regulate walking. Particularly, selective attention, conflict resolution, and dual-tasking

"It takes a child one year to acquire independent movement and ten years to acquire independent mobility.

An old person can lose both in a day"

Bernard Isaacs

"The Challenge of the Geriatric Medicine"

Professor Bernard Isaaes, MD; ER.C.P. (Glas.) 1922-1995

Gait & Brain Team

Parkwood Institute, London ON

Alanna Black Shay Nejim

Frederico Faria Yanina Sarquis-Adamson

Stephanie Cullen Nick Bray
Josh Titus Korbin Blue

Ryota Sakurai Susan Muir-Hunter

Web: gaitandbrain.com Email: mmontero@uwo.ca

Ontario institut Brain ontarien Institute du cerveau

Collaborations

Western University

Dr Vladimir Hachinski Dr Mark Speechley
Dr Tim Doherty Dr Michael Borrie
Dr Jennie Wells Dr Kevin Shoemaker
Dr Rob Bartha Dr Susan Hunter
Dr Amer Burhan Dr Akshya Vasudev

Montreal

Dr Howard Chertkow- McGill University Dr Louis Bherer- U de Montreal Dr K. Li - Concordia University

UBC

Dr Liu-Ambrose

Alberta

Dr Richard Camicioli Dr David Hogan

Harvard University, Cambridge

Dr Lewis Lipsitz Dr Brad Manor

University of Pittsburgh, PA

Dr Caterina Rosano Dr Stephanie Studenski Dr Ervin Sejdic Dr Andrea Rosso

Einstein College of Medicine, NYC

Joe Verghese Roe Holzter

WALK, France

Dr Olivier Beauchet – Univ of Angers, France Dr Cedric Anweiller - Univ of Anger

Japan

Dr Ryota Sakurai

Australia

Dr Gustavo Duque- Dr Michelle Calisaya

Spain

Dr Alayaro Casas - Dr Nicolas Martinez

Table 3. Common causes of falls and abnormal mobility and gait in older adults in relation to performance based evaluation.

Symptom:	Potential cause:	
	Lower Limb Weakness	
Difficulty rising from a chair	Osteoarthritis	
	Postural Hypotension	
Instability on first standing	Muscle Weakness	
Instability with eyes closed	Proprioception deficits	
	Parkinsonism	
Decreased step height/length	Frontal lobe disease	
	Fear of falling	

Consequences of falling for community-dwelling old

<u>CONSEQUENCE</u>	% OF FALLS
Hip fracture	1-2
Other fracture	3-5
Other injury (lacs, head, internal)	2-10
Minor inj (bruise, abrasion, sprain)	30-55
	% of FALLERS
Inability to get up after fall	39-50
Fear of falling	40-73
Decreased activity	41-43

(From: King 1995)

Independent Risk Factors for Falling Among Community-Living Older Adults

Risk Factor	# signif studies	RR	OR	
Previous falls	16	1.9-6.6	1.5-6.7	
Impaired balance	15	1.2-2.4	1.8-3.5	
↓ UE or LE strength	9	2.2-2.6	1.2-1.9	
Impaired vision	8	1.5-2.3	1.7-2.3	
>4 or psych meds	8	1.1-2.4	1.7-2.7	
Impaired gait	7	1.2-2.2	2.7	
Depression	6	1.5-2.8	1.4-2.2	
Dizzy/Orthostatic	5	2.0	1.6-2.6	

Independent Risk Factors for Falling Among Community-Living Older Adults

Risk Factor	# signif studies	RR	OR	
Functional/ADL prob	5	1.6-6.2	1.3	
Age > 80 y	4	1.1-1.3	1.1	
Female	3	2.1-3.9	2.3	
Low BMI	3	1.5-1.8	3.1	
Urinary incontinence	3		1.3-1.8	
Impaired cognition	3	2.8	1.9-2.1	
Arthritis/Pain	2/2	1.2-1.9	1.7	
Diabetes	2	3.8	2.8	

Intrinsic factors: falls and gait disorders

AGE

- Central processing
- Vision
- Vestibular
- Systemic
- Musculoskeletal
- Neurological

AGE-ASSOCIATED DISEASES

- Central processing
 - Dementia
- Vision
 - Cataracts, ARMD, Glaucoma
- Vestibular
 - Previous labyrinthitis, BPPV
- Systemic
 - Disease
- Musculoskeletal
 - **Arthritis**
- Neurological
 - Parkinson's, myelopathy, stroke, PN

Determine Fall Risk

- Hx falls
- Meds
- Gait, Balance, Mobility
- Visual Acuity
- Rest neuro (incl cog)
- Muscle Strength
- Heart Rate, Rhythm
- Postural hypotension
- Feet and footwear
- ADL/Fear of falling
- Environment hazard

Why Gait assessment and Falls?

	Risk Factor Domain*					
Source	Orthostatic Hypotension	Visual Impairment	Gait/Balance Impairment	Medications	Limitations in ADL	Cognitive Impairment
Bergland et al,24 2003		+	+	_	_	-
Campbell et al,25 1989	-	(#)	+	+:	+	-
Chu et al,26 2005	-	(+)	+	(m)	-	+
Duncan et al,27 1992			+			7
O'Loughlin et al, ²⁶ 1993			+	#1	-	
Stalenhoef et al,20 2002		-	+		_	-
Tinetti et al,22 1988		-	+	+	2	+
Tinetti et al, ³⁰ 1995		-	-	20		-
Tromp et al,24 2001	-	+	-	+	+	-
Zhang et al,32 2004			-			
Coleman et al,33 2004		+	+			
Luukinen et al,34 1995			+	+		
Luukinen et al, 35 1996	-		-		=	1-1
Teno et al, ³⁶ 1990					-	
van Bemmel et al,37 2005					+	?
Weiner et al,36 1998			?	+		2
Arden et al,30 1999	?		?	?		
Gerdhem et al,40 2005		=		+		
Summeryt	0/4	3/11	10/15	6/11	3/10	2/8

Classification system for gait disorders

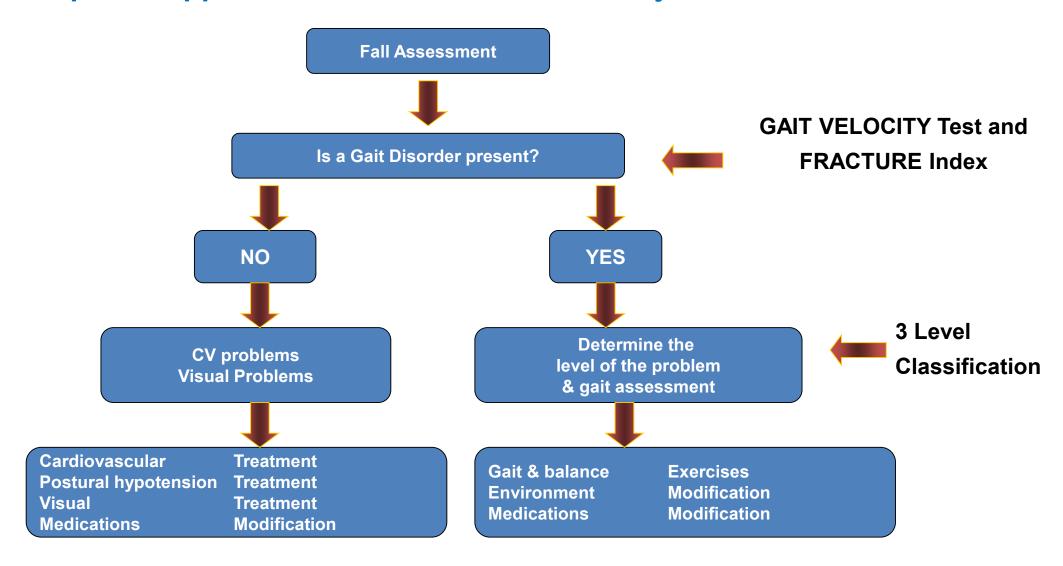
1.High Sensorimotor Level

- a) <u>Frontal Lobe Related</u>: Cerebro vascular/Normal Pressure Hydrocephalus / Gait ignition failure
- b) "Cautious Gait" (fear of falling)

2. Middle Sensorimotor level

- a) **Spasticity**: hemiplegia (paresis)
- b) Cerebellar ataxia
- c) Parkinsonism

3. Low Sensorimotor Level

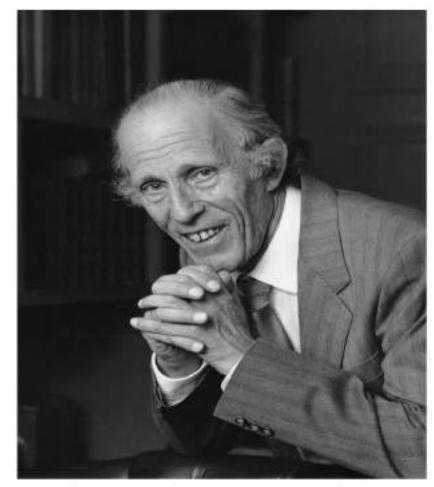

a) Peripheral Motor:

Arthritic (antalgic or joint deformity). Myopathic. Neuropathic

b) Peripheral sensory:

Sensory ataxia (posterior column disease, peripheral nerves) Vestibular Ataxia/ Visual ataxia

Proposed approach to assess falls older subjects


Adapted from: Montero Odasso M, Schapira M, Duque G et al. BMC Geriatrics, 2005. 5:15

"It takes a child one year to acquire independent movement and ten years to acquire independent mobility.

An old person can lose both in a day"

Bernard Isaacs

"The Challenge of the Geriatric Medicine"

Professor Bernard Isaacs, MD; F.R.C.P. (Glas.) 1922-1995