Epidemiology of Frailty

Paulo H. M. Chaves, MD, PhD
Associate Professor, Department of Medicine, Family Medicine, and Community Health, Florida International University
Adjunct Associate Professor, Division of Geriatric Medicine and Gerontology, Johns Hopkins University

Miami, FL, September 10-13, 2015
Frailty in Older Adults

• Dominant theme in Geriatrics
 – Assessment, prevention, and management of frailty in older adults

• Compression of morbidity in aging societies
 – Efforts above and beyond traditional diseases
 • Disability
 • Falls
 • Short Physical Performance Battery
 • Sarcopenia
Frailty in Older Adults

• **Enhanced vulnerability**
 – Adverse Outcomes
 • Disability
 • Healthcare utilization
 – ER visits, recurrent hospitalization, LoS, NH admission
 • Mortality
 – Health status heterogeneity not explained by chronologic age or diseases

• **Distinct from “normal aging”**
 – “normal” vs. accelerated age-related functional decline
Evolving, varying approaches

- Conceptualization
- Operational definition
 - Components of frailty models
 - Measurement of individual components
- Purpose
 - Risk prediction, stratification
 - Outcomes being predicted
 - Setting
 - Study biologic underpinnings
Frailty Phenotype

• Distinct medical syndrome

• Increased clinical vulnerability
 – Array of adverse health outcomes, including disability

• Pathophysiologic basis
 – Multisystem physiologic dysregulation
 – Reduced physiologic reserve compromising adaptation to stressors

• Clinically recognizable
CHS Frailty Phenotype Criteria: ≥3 of 5 items

- “Shrinking” - involuntary weight loss >10%
- Weakness – grip strength <20th pctile
- Slowness – walking speed <20th pctile
- Exhaustion – CES-Depression Scale mod.
- Decreased physical activity – Minnesota Leisure Time Activity questionnaire – bottom 20th pctile of calculated Kcal

Frailty Phenotype as a research tool

Molecular & Genetic

Physiology

Syndrome
- Weakness
- Slowed performance
- Weight loss
- Fatigue
- Low activity

Outcomes
- Falls
- Disability
- Dependency
- Death

Accumulation of age-related health deficits that robustly predicts mortality, institutionalization

- Health deficit can be any symptom, sign, laboratory measurement, disease, or disability
 - E.g., comorbidities, psychosocial factors, disability indicators

- Independent of the exact number, nature of deficits
 - Flexibility regarding # of deficits available (20-50 deficits)

- Continuous measure
 - Derived from comprehensive geriatric assessment

Mitnitski, Mogilner, and Rockwood 2001
Rockwood & Mitnitski 2011
Epidemiology of Frailty: Selected Aspects

• Transitions in frailty status
 – Frequent
 – More commonly from states of greater frailty than to states of lesser frailty
 – More commonly between adjacent states

• Gradual, progressive deterioration – window of opportunity?

Lee et al. JAMDA 2014.
Xue Q-L. Clin Geriatr Med 2011
• Hierarchical order in the onset of frailty manifestations over time
 – Weakness as the most common first manifestation
 – Occurrence of weakness, slowness, and low physical activity preceded exhaustion and weight loss
Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

Vulnerability
Frailty Status

Frailty-related manifestations

Disability & Other Outcomes
Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

“NO”

- Risk prediction as only goal
 - e.g., risk stratification in healthcare systems for planning

- Variables selection for vulnerability estimation
 - All feasible that optimize risk prediction
 - Do not need to be thought of as “causal”,
 - Do not need to be biologically correlated
 - No need to attempt to distinguish between “frailty”, disability, falls, multimorbidity, falls, etc.
 - Still depends on outcome of interest
 - Disability, costs
Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

“YES”

• Etiology and Treatment also as main goal(s)
 – Risk stratification still a goal

• Unique syndrome
 – Distinct from disability or any other
 – Offers rationale for research seeking to identify pathophysiologic basis, and specific frailty interventions

• Variables selection
 – Among those hypothesized to be in a causal pathway
 – Correlation among variables given underlying mechanism
Frailty as A Unique Geriatric Syndrome

- Causal pathway to frailty?

Frailty-related manifestations

Mechanisms?

Vulnerability Frailty Status

Disability & Other Outcomes
Frailty as A Unique Geriatric Syndrome

- Causal pathway to frailty?

Frailty-related manifestations
Vulnerability Frailty Status
Disability & Other Outcomes

Aging
Diseases
Health Behaviors

Homeostenosis & Physiologic dysregulation

Social Determinants of Health
Age-Related Chronic Diseases and Frailty

- Examples of age-related chronic diseases or conditions
 - Cardiovascular disease
 - Diabetes
 - Osteoarthritis
 - COPD
 - “Obesity”
 - CKD (eGFR)
Subclinical Disease and Frailty

Age-, race-, and gender-adjusted ORs in elderly without CVD

<table>
<thead>
<tr>
<th>Measure</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclinical stroke per MRI</td>
<td>1.71</td>
<td>(1.15, 2.55)</td>
</tr>
<tr>
<td>Any major ECG abnormality</td>
<td>1.58</td>
<td>(1.10, 2.26)</td>
</tr>
<tr>
<td>LV motion abnormality on echo</td>
<td>2.47</td>
<td>(1.13, 5.39)</td>
</tr>
<tr>
<td>AAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.8 vs. >1.0</td>
<td>3.56</td>
<td>(2.03, 6.24)</td>
</tr>
<tr>
<td>≥0.8 and ≤ 0.9 vs. >1.0</td>
<td>2.01</td>
<td>(1.07, 3.76)</td>
</tr>
<tr>
<td>Carotid USG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIT-CCA (.5mm increase)</td>
<td>1.46</td>
<td>(1.00, 2.14)</td>
</tr>
<tr>
<td>MIT-ICA (.25 mm increase)</td>
<td>1.09</td>
<td>(1.02, 1.18)</td>
</tr>
</tbody>
</table>

Conjoint Associations of Diseases

Adjusted for age, education, depression, MMSE, prevalent RA, and calculated GFR.
• Selected examples
 – Low physical activity
 – Diet
 • Deficient caloric and protein intake
 • Quality of diet
 – Mediterranean diet
 – Fruits and salad intake
 – Excessive alcohol intake
Social Determinants of Health and Frailty

• Individual
 – Female gender
 – Minorities
 – Lower education
 – Financial strain
 – Loneliness
 – Lower levels of social support
 – Life space restriction
 – Restricted access to care
 – Reduced engagement in productive activities

Gutierrez-Robledo, IAGG Workshop 2011
Social Determinants of Health and Frailty

• **Neighborhood**
 – Less ethnically dense neighborhood
 – Deprived SES neighborhood

 [Aranda et al 2011
 Lang et al. 2009]

• **General Concept**

 ![Diagram](https://example.com/diagram.png)
Frailty as A Unique Geriatric Syndrome

- Causal pathway to frailty?

Aging

Diseases

Health Behaviors

Homeostenosis & Physiologic dysregulation

Vulnerability Frailty Status

Frailty-related manifestations

Disability & Other Outcomes

Social Determinants of Health
Mechanisms for Frailty: Molecular & Genetics & Physiology

Molecular & Genetics
- Mitochondrial dysfunction
- Epigenetics
- Senescence
- Autophagy

Physiology
- Exaggerated stress response
 - Chronic inflammatory path activation
 - Autonomic dysfunction
 - ↓parasympathetic, ↑sympathetic
 - Increased HPA axis activity
- Energy homeostasis dysregulation
 - ↓production, ↑utilization

Clinical Manifestations
- Sarcopenia, anemia, atherosclerosis, altered clotting, insulin resistance and other hormonal abnormalities
Independently, a number of systems shown to be associated with frailty

Concurrently, aggregate impact on frailty status?

Adjusting for the level of each system measure, # systems impaired nonlinearly were associated with frailty
Cognition in the Definition of Frailty?

• Prediction perspective
 – Cognitive impairment predicts adverse outcomes
 • Disability, Institutionalization, Hospitalization, Death
 – Frailty and cognitive impairment are associated
 • Frailty predicts cognitive impairment
 • Cognitive impairment predicts frailty
 – Addition of cognitive impairment indicator enhances prediction of adverse outcomes
 – Is enhancement of predictive ability enough?
• Biological perspective
 – Common underlying pathophysiology of which physical and cognitive decline are manifestations?

- Socio-behavioral
- Diseases
 - Shared Mechanisms
 - e.g., inflammation, oxidative stress, neuroendocrine, atherosclerosis, AD pathology, anemia, hypovitaminosis D
- Physical Function Decline
- Cognitive Function Decline
- Vulnerability Frailty Status
- Disability & Other Outcomes
Cognition in the Definition of Frailty?

- **Treatment perspective**
 - Too distinct effect of treatment on physical function and cognitive function pathways?

 ![Diagram of Treatment Effects and Frailty Status](image)
Frailty in Older Adults

• Frailty at the core of geriatric medicine

• Frail older adults at risk for adverse health outcomes
 – Excess vulnerability not explained by presence of chronic diseases alone or chronological age

• Opportunity for intervention
 – Screening and intervention may lead to improved quality of life, lower costs
Major advances

- Conceptual frameworks & operational definitions
- Study of the epidemiology of frailty
- Insight into the etiology of frailty and potentially modifiable risk factors
- Use for risk stratification in clinical decision-making
 - Surgery, Diabetes, Hypertension
- Geriatric Frailty Clinic
- Target population for RCT
Frailty in Older Adults

• Lack of consensus on one operational definition should not be a deterring factor
 – Major problem for design of trials targeting frailty as primary outcome
 – Natural history of clinical investigation
 – Complementary, evolving approaches
 – Test of time: What works?
 • Improves quality of life
 • Reduce costs
• Limited knowledge, clinical trial data
 – Frailty prevention and/or reversal, and disability prevention and/or postponement

• Mostly indirect
 – Frailty components (e.g., strength) as targets and frailty outcomes (e.g., mobility disability)

• Most robust evidence to reduce vulnerability
 – Exercise; i.e., strength and aerobic

http://www.frailomic.org/
Randomized, placebo-controlled trial

10 weeks, n=100

Long Term care Facility residents without severe cognitive impairment

Lower-extremity resistance training and/or multi-nutrient supplement (10 weeks)

Placebo (recreational) activity and placebo supplement
• Selected Characteristics in Exercise Group
 – Mean age: 86.2 years old
 – Mean Length of stay: 9 months
 – Mean Gait speed: .51 m/sec
 – Falls in past year: 72%
 – Level of care received:
 • 32% independent
 • 64% semi-dependent
 • 4% dependent
LIFE-P Trial and Frailty

- RCT, physical activity vs. successful aging
 - 25 weeks
- Community-dwelling
- Aged 70-89 years
- Sedentary
 - < 20 min/week in regular physical activity
- SPPB<=9

LIFE-P Trial and Frailty

Need for clinical trial data to guide inclusion of specific components of multifactorial interventions

- Vitamin D
- Testosterone and other hormones
- Myostatin inhibitors
- Nutrition
- Anti-inflammatory agents
- Angiotensin II receptor blockers (ARBs) that target RAS dysregulation
Epidemiology of Frailty Research Agenda

• Need for improved understanding about physiologic and molecular changes that drive the pathogenesis of frailty
 – Target pathways
 – Clinical assessment tools
 – Novel, early treatments

• FRAILOMIC initiative
 – Insight into factors that turn frailty into disability
 – Enhance clinical prediction

http://www.frailomic.org/
Enhance knowledge about social determinants of health across the life course
 – From early childhood to late-life

Research integrating assessment-intervention of social determinants of health and medical factors
Frailty Vulnerability: One or more?

- Physical Vulnerability
- Cognitive Vulnerability
- Biomarkers Vulnerability
- Social Vulnerability

 Physical Vulnerability

 Social Vulnerability

 Biomarkers Vulnerability

 Cognitive Vulnerability
• Need for data on the added value of frailty assessment for clinical decision-making
 – Clinical tool for risk assessment before surgery
 – Consequences of raising awareness?
• Geriatric Frailty Clinic at the Gerontopole de Toulouse as a major moving forward initiative
 – Medical condition that needed a new intervention in more than 50% of the patients
 – Therapeutic changes, Recommendations
 • Nutrition, physical activity, social, specialist
Geriatric Frailty Clinic at the Gerontopole de Toulouse as a major moving forward initiative

- Preliminary insight on Outcomes, Costs
- Experience from redesigning healthcare delivery
 - Coordination of multifactorial assessment & intervention
- Refinement of tools to identify those who may benefit the most
- Intervention components
- RCT testing added value of frailty
Translational Epidemiology & Frailty

• Reshaping healthcare delivery system
 – Integrated, coordinated care
 • Quality of life
 • Efficient, sustainable
 – Innovation
 • Culture
 • Policies & Reimbursement models
 • Bridges community-clinical setting – academia & other stakeholders
 – Expansion of prevention opportunities
Examples of Other Vulnerability Indices

• Vulnerable Elders Survey (VES-13) *
 – Simple screening tool to identify community-dwelling older persons at risk for health deterioration
 • Age, self-rated health, disability

• Index for measuring overuse of healthcare resources with Medicare claims data **

* Saliba et al. JAGS 2001
** Segal et al. Med Care 2014
Frailty in Older Adults

• Frailty concept, prevention, and treatment at the core of geriatric medicine

• Excess vulnerability
 – Not explained by presence of chronic diseases alone or chronological age
 • Late-life health status heterogeneity
 – Does not distinguish between frailty, disability, and comorbidities
Frailty in Older Adults

• Proposed as geriatric syndrome
 – Common
 – Causal contributor to disability, adverse outcomes
 – Underlying mechanism
 – May offer a novel intervention approach
 • Frailty prevention and/or reversal, disability prevention
 – Quality of life
 – Healthcare utilization
Mechanisms for Frailty: Molecular & Genetics & Physiology

- Aggregate effects and complex interactions across systems essential to homeostasis
- Different levels Physiologic dysregulation
 - Molecular/genetic
 - Physiologic
 - Clinical presentation and vulnerability
Frailty as A Unique Geriatric Syndrome

- Causal pathway to frailty?

Mechanisms? → Vulnerability → Frailty Status → Disability & Other Outcomes

Frailty-related manifestations
Primary vs. secondary frailty

- Severe impairment in single system; ie, “secondary frailty”
- Mild-to-moderate impairments in multiple physiologic systems; ie, “primary frailty”
Considerations and Implications for Assessment of Frailty Status in older adults?

Main Goal: Risk Prediction

Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

- Risk prediction is the Goal If the answer is “No”
- All possible (feasible) variables that maximize risk prediction, stratification
- Variables do not need to be thought of as “causal”
- Variables do not need to be biologically correlated among themselves
- Don’t even need to be Medical
- Do not need to attempt to distinguish between “frailty”, disability, falls, multimorbidity, falls, etc. in the context of healthcare services utilization
- Context Example: Risk stratification in healthcare
Where could we be in ten years?

• Frailty syndrome(s) in ICD-x?
• Frailty syndrome(s) as FDA-accepted indications for interventions?
• Highly effective treatments for frailty?
• Frailty prevention strategies?

It could happen.
Frailty Research Agenda

- What reduces vulnerability?
- Exercise
- Improved understanding about physiologic and molecular changes that drive the pathogenesis of frailty
 - Target pathways
 - Clinical assessment tools
 - Novel, early treatments above and beyond disease-specific approaches
- FRAILOMIC initiative
 - Large scale research project aiming to identify the factors that turn frailty into disability

http://www.frailomic.org/
Mechanisms for Frailty: Molecular & Genetics & Physiology

- Aggregate effects and complex interactions across systems essential to homeostasis
- Different levels Physiologic dysregulation
 - Molecular/genetic
 - Physiologic
 - Clinical presentation and vulnerability
- Mitochondrial dysfunction
- Autophagy
- Oxidative stress
- Inflammation
- Telomere dysfunction
Risk Factors for Frailty: Molecular & Genetics

• Mitochondrial dysfunction
• Autophagy
• Oxidative stress
• Inflammation
• Telomere dysfunction
• Immuno dysfunction
• Autonomic dysfunction
• Loss parasympathetic, increased sympathetic
• Neuroendocrine
Physiologic impairments in frailty: Association of abnormal levels in multiple physiological systems with frailty

- Sarcopenia
- Inflammation
- Decreased heart rate variability
- Altered clotting processes
- Altered insulin resistance
- Anemia
- Altered neuroendocrine axis:
 - cortisol response to stress
Evidence to date: Biomediators associated with frailty syndrome

- Independent: IGF1, IL-6, anemia, clotting factors, insulin resistance, undernutrition
- Pairwise: IGF1 * IL-6
- Parallel: DHEAS, IGF1, IL-6
• Muscle
• Inflammation
• Hormones
• Vitamin D
• Anemia
• Comprehensive geriatric management
A number of systems independently associated with frailty.

Does dysregulation of multiple systems concurrently have an aggregate effect on frailty?
Increasing number of systems at adverse levels associated with frailty phenotype
Hypothesized Pathway to Frailty and Loss of Independence in Older Adults

Ultimate Causes
- Genetics
- Environment

Subclinical Components and Mechanisms
- Homeostasis and Dysregulation along a continuum
 - Metabolic regulation
 - Glucose intolerance
 - Inflammation
 - Body Composition
 - Cognition
 - Neuroendocrine: HPA
 - Anemia
 - Clotting
 - Oxidative stress

Clinically Observable Syndrome
- Robust
- Frail
 - Weight loss
 - Sarcopenia
 - Weakness
 - Exhaustion
 - Slowed performance
 - Low Physical Activity

Distal Outcomes
- Decreased Function
- Loss of independence
- Increased Morbidity
- Increased Mortality

RESILIENCY
- Robust
- Frail

Disease
Causal Pathway 2003

Primary Causes of Frailty:
- Age-related molecular changes
- Genetic variation

Secondary Causes of Frailty:
- Depression
- Cancer
- Chronic Infection
- CHF

Clinical Syndrome of Frailty

- Immune Dysfunction
- Neuroendocrine Dysregulation
- Sarcopenia
- Hemoglobin
- IL-6
- IGF-1
- DHEA-S
FRAILTY

- Hallmark → decreased physiologic reserve
 - Severe impairment in single system; ie, “secondary frailty”
 - Mild-to-moderate impairments in multiple physiologic systems; ie, “primary frailty”
FUTURE DIRECTIONS

• Mechanisms that constitute the pathophysiologic basis of frailty
• How physiologic systems interact and target signals
• Opportunity to prevent or reverse frailty?
• Strongest evidence for exercise
• Integrate frailty, disability, and sarcopenia
• Comprehensive geriatric assessment
Frailty in Older Adults

- Frailty concept, prevention, and treatment at the core of geriatric medicine
- Increasing recognition
 - Geriatrics & expanding into other specialties
- Common geriatric syndrome that may offer a novel opportunity for disability prevention in aging societies
 - Impact on quality of life
 - Healthcare utilization
Frailty in Older Adults

- Excess vulnerability
 - Late-life health status heterogeneity
 - Does not distinguish between frailty, disability, and comorbidities

- Proposed as geriatric syndrome
 - Causal contributor to disability, adverse outcomes
 - Underlying mechanism
 - Target for intervention
 - Frailty prevention and/or reversal
 - Disability prevention
Cumulative Incidence of Incident Frailty Per Baseline Vitamin D Levels

Median follow-up time ~ 9 years

25(OH) Vitamin D Levels (ng/mL)

- <10 (n=29, 8%)
- 10-20 (n=136, 37%)
- 20-30 (n=143, 38%)
- 30+ (n=65, 17%)

- 37.9%
- 27.9%
- 19.6%
- 16.9%
- 0.0%
- 10.0%
- 20.0%
- 30.0%
- 40.0%
- 50.0%
Adjusted* Relative Hazards of Incident Frailty

<table>
<thead>
<tr>
<th>25(OH)D Level, ng/mL</th>
<th>RR</th>
<th>95%CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>1.0</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>10-20</td>
<td>.67</td>
<td>.34-1.3</td>
<td>.261</td>
</tr>
<tr>
<td>20-30</td>
<td>.42</td>
<td>.20-.88</td>
<td>.022</td>
</tr>
<tr>
<td>30+</td>
<td>.39</td>
<td>.16-.95</td>
<td>.039</td>
</tr>
</tbody>
</table>

* Adjusted for age, race, education, CVD, diabetes, depression (GDS), hip/knee OA, and MMSE scores
<table>
<thead>
<tr>
<th>Serum 25(OH)D, ng/mL</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
<td>Reference</td>
</tr>
<tr>
<td>20</td>
<td>.83</td>
<td>.73-.96</td>
</tr>
<tr>
<td>25</td>
<td>.69</td>
<td>.53-.91</td>
</tr>
<tr>
<td>30</td>
<td>.58</td>
<td>.39-.86</td>
</tr>
<tr>
<td>35</td>
<td>.48</td>
<td>.28-.82</td>
</tr>
</tbody>
</table>

* Adjusted for age, race, education, CVD, diabetes, depression (GDS), hip/knee OA, and MMSE scores
Cumulative risk of incident frailty across the continuous distribution of serum 25(OH)D
Concept – Definition-Application

• Concept of Frailty: one or many?
• Vulnerability at-risk
• Syndrome
• Multifactorial
• Etc.
• Research on frailty received a tremendous push with the introduction of a standardized, valid operational definition for frailty
• Fried
• Rockwood
Translational Epidemiology

Slide from Linda on frailty investigation?

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>RF</th>
<th>Condition of Interest</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traditional Epidemiology

Distribution

Mechanisms

RF | Condition of Interest | Outcomes

Message: without knowing well what that is, it does not make sense – focus on concept

Slide form Gordis?
Different measures for different applications
Opportunities for prevention

• Primary
• Secondary
• Tertiary
• Primary care setting
• Geriatricians, GP,
• Frailty clinics
• Above and beyond usual care
Frailty as a Unique Geriatric Syndrome

• Causal pathway to frailty?

Mechanisms → Vulnerability → Disability & Other Outcomes
Molecular & Genetics Physiology
Frailty Status
Frailty-related manifestations
Aging Diseases Accelerated Functional Decline Risk of Adverse Outcomes Vulnerability to Stressors

Homeostasis disruption
- Mitochondria dysfunction
- Autophagy, immune-system
- Neuro-endocrine dysregulation
- Inflammatory pathways

Reduced Physiologic Reserve
- Anemia, atherosclerosis, metabolic abnormalities, sarcopenia, PNS deficits, pulmonary function

Accelerated Functional Decline

Vulnerability to Stressors

Risk of Adverse Outcomes
- Falls, Disability, NH admission, Hospitalization, Mortality
Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?

Mechanisms
Homeostenosis & Physiologic dysregulation

Frailty-related manifestations

Vulnerability Frailty Status

Disability & Other Outcomes
Ageing Diseases | Aging | Health Habits

Homeostasis disruption \rightarrow Reduced Physiologic Reserve

Accelerated Functional Decline \leftrightarrow Vulnerability to Stressors

Risk of Adverse Outcomes

Falls, Disability, NH admission, Hospitalization, Mortality
Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?

Aging → Diseases → Mechanisms → Vulnerability → Frailty Status → Disability & Other Outcomes

Diseases → Health Behaviors

Mechanisms

Social Factors Determinants of Health

Frailty-related manifestations
Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?

![Diagram]

Molecular/genetics
Physiology

Mechanisms → Vulnerability → Frailty Status
Frailty-related manifestations → Disability & Other Outcomes
Frailty as a Unique Geriatric Syndrome

- Hypothesis:
- Driven by genetic/molecular & physiology as driven forces
- Homeostatic disruption
- Dysregulation across multiple physiologic systems

- Clinical syndrome due to loss of physiological reserve in multiple systems
- Develops in a stepwise fashion, secondary to stressors such as acute illness or injury
- Homeostenosis
- Age-related dysregulation of multiple physiologic systems:
 - Decreased complexity, range and accuracy of system’s responsiveness to stress
 - Cumulative declines in reserve across systems, with compromised ability to maintain homeostasis
 - Shifts toward greater and prolonged response to challenges, e.g.:
 - HPA Axis/neuroendocrine stress response system
 - Inflammation
 - Glucose metabolism
 - Cardiohemodynamics

[Fretwell 1985; Lipsitz & Goldberger 1992]
Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?
Frailty as a Unique Geriatric Syndrome

• Causal pathway to frailty?

Mechanisms

Homeostenosis & Physiologic dysregulation

Vulnerability
Frailty Status

Disability & Other Outcomes

Frailty-related manifestations

Abnormal Molecular & Genetics Physiology

Homeostatic disruption
Frailty as a Unique Geriatric Syndrome

- Hypothesis:
- Biological syndrome due to loss of physiological reserve in multiple systems
- Develops in a stepwise fashion, secondary to stressors such as acute illness or injury
- Homeostenosis
- Age-related dysregulation of multiple physiologic systems:
 - Decreased complexity, range and accuracy of system’s responsiveness to stress
 - Cumulative declines in reserve across systems, with compromised ability to maintain homeostasis
 - Shifts toward greater and prolonged response to challenges, e.g.:
 - HPA Axis/neuroendocrine stress response system
 - Inflammation
 - Glucose metabolism
 - Cardiohemodynamics

[Fretwell 1985; Lipsitz & Goldberger 1992]
Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?

- Frailty as a Unique Geriatric Syndrome

- Mechanisms

- Frailty-related manifestations

- Disability & Other Outcomes

- Social Factors Determinants of Health

- Aging

- Diseases

- Health Behaviors

- Vulnerability

- Frailty Status
Frailty as a Unique Geriatric Syndrome

• Causal pathway to frailty?
Causal Pathway for Frailty

Molecular & Genetic

? → ? → ?

Physiology

Syndrome

- Weakness
- Slowed performance
- Weight loss
- Fatigue
- Low activity

Outcomes

Falls
Disability
Dependency
Death

Frailty as a Unique Geriatric Syndrome

- Causal pathway to frailty?

![Diagram showing the causal pathway to frailty.](https://via.placeholder.com/150)
Frailty, Disability and Comorbidity in CHS

- Disabled
 - 57 (19.1%)

- Comorbid
 - 40 (13.4%)

- Frail
 - 182 (60.9%)

- 20 (6.7%)

Total:

- 20 (6.7%) are disables and comorbid.
- 57 (19.1%) are disabled.
- 40 (13.4%) are comorbid.
- 182 (60.9%) are frail.
Pathway to disability

• Disaggregate frailty and preclinical disability
 – Frailty a marker of aggregate declines in physiologic reserve and vulnerability to an array of adverse health outcomes, including disability
 – Preclinical Disability the response of the individual to functional decrements due to underlying health changes – compensation to preserve function, delay disability.
 – Both may be outcomes of comorbidity
Scatterplot Displaying the Relationship Between Self-Reported Mobility Difficulty (Walking ¼ Mile or Climbing Up 10 steps)

Relation Between Categories of Lower-Extremity Summary Performance Score (SPS) and Hb

SPS → Higher scores indicate better performance/functional status. Indicated is the proportion of subjects in the best SPS category: 10–12

Prevalence of Frailty for 3 Blood Test Abnormalities in 70-79 year olds in WHAS I and II
<table>
<thead>
<tr>
<th>System</th>
<th>Measure</th>
<th>Cutoff</th>
<th>Non-Frail N=284</th>
<th>Pre-Frail N=331</th>
<th>Frail N=90</th>
<th>Overall N=705</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>Hemoglobin</td>
<td><12 gm/dL</td>
<td>10.1</td>
<td>13.2</td>
<td>27.5</td>
<td>13.4</td>
</tr>
<tr>
<td>Inflammation</td>
<td>IL-6</td>
<td>>3.7 pg/mL</td>
<td>27.1</td>
<td>33.4</td>
<td>35.2</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>CRP</td>
<td>>7.5 mg/L</td>
<td>19.5</td>
<td>24.3</td>
<td>34.1</td>
<td>23.3</td>
</tr>
<tr>
<td>Endocrine</td>
<td>IGF-1</td>
<td><74.3 ng/mL</td>
<td>14</td>
<td>18.8</td>
<td>26.9</td>
<td>17.7</td>
</tr>
<tr>
<td>Glucose Tolerance</td>
<td>GHB</td>
<td>>8.6 % for 673A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>7.1 % for 673B</td>
<td>10.3</td>
<td>20.5</td>
<td>19.8</td>
<td>15.8</td>
</tr>
<tr>
<td>Immune Function</td>
<td>Lymphocyte</td>
<td><18%</td>
<td>9.3</td>
<td>6.5</td>
<td>15.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Sarcopenia</td>
<td>AMA</td>
<td>Bottom Quartile</td>
<td>12.1</td>
<td>27.4</td>
<td>59.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Fine Motor Speed</td>
<td>Purdue Pegboard</td>
<td>Bottom Quartile</td>
<td>14.5</td>
<td>27.1</td>
<td>51.8</td>
<td>24.6</td>
</tr>
<tr>
<td>Hormone</td>
<td>DHEA-S</td>
<td>< 0.215 mcg/ML</td>
<td>1.9</td>
<td>5.6</td>
<td>18</td>
<td>5.4</td>
</tr>
<tr>
<td>Nutrient</td>
<td>25-OH Vit. D</td>
<td><30 nmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folate</td>
<td><5 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B12</td>
<td><300 pg/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpha-tocopherol</td>
<td><11.6 umol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Carotenoids</td>
<td><0.45 umol/L</td>
<td>17.9</td>
<td>24.1</td>
<td>35.7</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>(>=2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td><3.75 gm/dL</td>
<td>3.3</td>
<td>8.5</td>
<td>21.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>
Combined WHAS I and WHAS II (Age 70-79)
Hypothesized Pathway to Frailty and Loss of Independence in Older Adults

Ultimate Causes
- Genetics
- Environment

Subclinical Components and Mechanisms
- Homeostasis and Dysregulation along a continuum
- Metabolic regulation
- Glucose intolerance
- Inflammation
- Body Composition
- Cognition
- Neuroendocrine: HPA
- Anemia
- Clotting
- Oxidative stress

Clinically Observable Syndrome
- Robust
- Frail
 - Weight loss
 - Sarcopenia
 - Weakness
 - Exhaustion
 - Slowed performance
 - Low Physical Activity

Distal Outcomes
- Decreased Function
- Loss of independence
- Increased Morbidity
- Increased Mortality

Resiliency
7/1. The Genesis and Rationale:
Clinical Problem

2. Conceptual Framework:
Population-based and Clinical Evidence

3. Phenotype:
Clinically observable syndrome
- Population-based evidence
- Modifiable pathways

4. Converging Literature:
Hypotheses development
- Physiology: subclinical components and mechanisms
- Biology: Ultimate cause

5. Subclinical Components and Mechanisms:
Hypothesis testing;
Modifiable Pathways
Population ↔ Laboratory

6. Ultimate Causes:
Genetics – Environment
Laboratory ↔ Populations
- Modifiable Pathways -

Natural History of Investigation: Clinical Trials
Outcomes

• Similar to disability in terms of mortality and healthcare utilization
• Bidirectional associations
• Should disability be a part of it?
• Differences and similarities
• frailty phenotype and the frailty index
Risk factors for Frailty:
Selected examples of Chronic Diseases

• Age-related chronic diseases or conditions
• Cardiovascular disease
• Diabetes
• Osteoarthritis
• Obesity
• Depression
• eGFR
• Subclinical diseases
• Health Habits
• Low physical activity
• Diet – proteic-caloric
• Alcocohol execsiive
Hypothesized Pathway to Frailty and Loss of Independence in Older Adults

Ultimate Causes

- Genetics
- Environment

Disease

- Homeostasis and Dysregulation along a continuum
 - Metabolic regulation
 - Inflammation
 - Body Composition
 - Cognition
 - Neuroendocrine

Subclinical Components and Mechanisms

- Robust
- Frail
 - Weight loss
 - Sarcopenia
 - Weakness
 - Exhaustion
 - Slowed performance
 - Low Physical Activity

Clinically Observable Syndrome

- Decreased Function
- Loss of independence
- Increased Morbidity
- Increased Mortality

Distal Outcomes

Resiliency

- Robust
- Frail

- Decreased Function
- Loss of independence
- Increased Morbidity
- Increased Mortality
• Marker of health status deficits that accumulate over life to indicate overall risk?

• Actual entity with a common etiology that offers the basis for prevention?

• Is it a cause or a marker?

• Thus, potentially preventable
Mechanisms of frailty: systems biology

- Multisystem dysregulation and its association with frailty: aggregate effects and delicate balancing of systems essential to homeostasis
- Define relationships within and between levels:
 - Clinical presentation
 - Physiologic dysregulation
 - Cellular dysregulation
 - Molecular/genetic
Selected Debated Issues:
Cognition in the definition of frailty?

- Biological Plausibility perspective
 - Common underlying pathophysiologic basis of which physical and cognitive decline are manifestations?

Aging
Diseases
Sociobehavioral

Shared Mechanisms

Physical Function Decline

Cognitive Function Decline

Vulnerability Frailty Status

Disability & Other Outcomes

Atherosclerosis, neuroendocrine, /CVD
Diabetes
Depression
Physical activity
Additional Aspects: Frailty and Cognition

- Shared Biological Causes
 - Subclinical/Clinical Atherosclerosis/CVD
 - Diabetes
 - Depression
 - Physical activity
 - Diet
 - Vitamin D
 - Inflammation
 - Oxidative stress
 - Endocrine
 - Social Determinants of Health

- Physical Function Decline

- Cognitive Function Decline

- Vulnerability Frailty Status

- Disability & Other Adverse Outcomes
Frailty is more than its phenotype

- Marker of other things
- Unique value
- Falls: value

Next Steps: The Underlying Etiology of Frailty Syndrome
Causal Pathway for Frailty

Molecular & Genetic

? → ? → Syndrome

• Weakness
• Slowed performance
• Weight loss
• Fatigue
• Low activity

Outcomes

Is Frailty More than an Aggregate of Measures Indicating Vulnerability?
Frailty – Many Questions

- Is Frailty more than its phenotype (more than just vulnerability?), is there an Underlying Etiology
- Marker of other things
- Unique value
- Falls: value
Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

Implications for assessment of frailty status

Adverse Outcomes

No

Main Goal: Risk Prediction

All possible variables that maximize risk prediction

V

Vulnerability

Variables do not need to be thought of as “causal”

Variables do not need to be correlated
Causal Pathway for Frailty

Molecular & Genetic

Physiology

Syndrome
- Weakness
- Slowed performance
- Weight loss
- Fatigue
- Low activity

Outcomes
- Falls
- Disability
- Dependency
- Death

Frailty

• Consensus:
• Has been a dominant theme
• Phylosophically: reason to be a physician
• Embrace complexity
• Disease itself is not enough
• Focus on function
• Academically: publications graph
• Leo’s textbook, cecil/harrison, Hazard, pther ...
• Increasign interest in other disciplines
Epidemiology of Frailty: Selected Aspects

• Prevalence
Phenotype of frailty

• Prevalent in community-dwelling older adults

• Aggregate syndrome associated with high risk for adverse outcomes, adjusting for diseases

• Predictor of disability; not synonymous

• Potential method for screening; now validated in national and international working groups, 2002.
To specialize in conducting aging research is ...

- To embrace the challenge of dealing with health status heterogeneity and its complexities
 - Thinking about it every minute, from study conception & design, to data analysis & reporting
- To think differently than the paradigm taught in Epi 1
 - Disease as risk factors for outcomes (e.g., frailty)
- To understand that this segment of the population has unique, special demands, and to be happy about spending additional and substantial amount of effort to ethically match these demands, and accomplish the scientific pursuit
 - Thus, when conducting research in a special group such as the older population, “special” gerontological approaches are necessary to deal with a series of specific issues, which will be discussed in this talk.
Frailty Index

- “Shrinking” - involuntary weight loss >10%
- Weakness – grip strength <20th pctile
- Slowness – walking speed <20th pctile
- Exhaustion – CES-Depression Scale mod.
- Decreased physical activity – Minnesota Leisure Time Activity questionnaire – bottom 20th pctile of calculated Kcal

NUMBER OF OTHER MEASURES OF FRAILTY

- VES
- Pra
- Alguma outra “Shrinking” - involuntary weight loss >10%
- Weakness – grip strength <20th pctile
- Slowness – walking speed <20th pctile
- Exhaustion – CES-Depression Scale mod.
- Decreased physical activity – Minnesota Leisure Time Activity questionnaire –
 - bottom 20th pctile of calculated Kcal
- Jody Segal

• 3 major vertents
• Own pathogenesis
• Marker

• Health records
Using the phenotype advanced knowledge about the natural history of frailty

- Outcomes
- Transient
- Early manifestations
- Risk factors
- Compare to Andreas Stuck
Selected Aspects of the Epidemiology of Frailty

• Prevalence
• Risk Factor
• Natural History
• Biomarkers
• Opportunities for prevention
Mechanisms for Frailty: Molecular & Genetics & Physiology

- Molecular & Genetics
- Mitochondrial dysfunction
- Epigenetics
- Senescence
- Autophagy
- Physiology
- Exaggerated stress response
- Chronic activation of inflammation pathways
- Telomere dysfunction
- Immuno dysfunction
- Autonomic dysfunction
Risk Factors for Frailty: Molecular & Genetics

- Mitochondrial dysfunction
- Autophagy
- Oxidative stress
- Inflammation
- Telomere dysfunction
- Immuno dysfunction
- Autonomic dysfunction
- Loss parasympathetic, increased sympathetic
- Neuroendocrine
Physiologic impairments in frailty: Association of abnormal levels in multiple physiological systems with frailty

- Sarcopenia
- Inflammation
- Decreased heart rate variability
- Altered clotting processes
- Altered insulin resistance
- Anemia
- Altered neuroendocrine axis:
 - cortisol response to stress
Evidence to date: Biomediators associated with frailty syndrome

- Independent: IGF1, IL-6, anemia, clotting factors, insulin resistance, undernutrition
- Pairwise: IGF1 * IL-6
- Parallel: DHEAS, IGF1, IL-6
• Muscle
• Inflammation
• Hormones
• Vitamin D
• Anemia
• Comprehensive geriatric management
Hypothesized Pathway to Frailty and Loss of Independence in Older Adults

Ultimate Causes
- Genetics
- Environment

Subclinical Components and Mechanisms
- Homeostasis and Dysregulation along a continuum
 - Metabolic regulation
 - Glucose intolerance
 - Inflammation
 - Body Composition
 - Cognition
 - Neuroendocrine: HPA
 - Anemia
 - Clotting
 - Oxidative stress

Clinically Observable Syndrome
- Robust
- Frail
 - Weight loss
 - Sarcopenia
 - Weakness
 - Exhaustion
 - Slowed performance
 - Low Physical Activity

Distal Outcomes
- Decreased Function
- Loss of independence
- Increased Morbidity
- Increased Mortality

RESILIENCY
- Robust
- Frail

Primary Causes of Frailty:
Age-related molecular changes
Genetic variation

Secondary Causes of Frailty:
Depression
Cancer
Chronic Infection
CHF

Causal Pathway 2003

Immune Dysfunction
Sarcopenia
Hemoglobin
Neuroendocrine Dysregulation
IL-6
IGF-1
DHEA-S

Clinical Syndrome of Frailty
• Much progress
• Conceptual frameworks
• Operational definitions
• Descriptive epidemiology
• Increased awareness
• Even outside discipline
• Worldwide collaborations specific on frailty
• Still lots of questions
• Conceptualization
• Methods
• Groundwork for next steps
• Frailty clinic – Toulouse
• Frailomics
• Rockwood’s
• Hopkins Pepper Center
Conclusion

- Geriatrics management approaches
- Emphasis on functional decline and quality of life
- Competing issues
- Multiple morbidities
- Polypharmacy
- Life expectancy limitations
- Exclusion of frail older adults from clinical trials
- Comprehensive geriatric assessment
Transitions in Frailty Status

• Example
Considerations and Implications for Assessment of Frailty Status in older adults?

Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

• If answer is “Yes” – Ethiology
• Unique condition
• Distinct from disability or any other
• Variables need to be selected among those hypothesized to be in a causal pathway
• Correlation among variables given common underlying mechanism
• Research to identify pathophysiologic basis, and specific treatment for frailty in the hope that this will translate into lower disability risk
• Frailty is a cause, not merely a marker of risk
Considerations and Implications for Assessment of Frailty Status in older adults?

Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

No

Main Goal: Risk Prediction

All possible variables that maximize risk prediction

Variables do not need to be thought of as “causal”

Variables do not need to be biologically correlated among themselves
Don’t even need to be Medical

Do not need to attempt to distinguish between “frailty”, disability, falls, multimorbidity, fall

Context Example: Risk stratification in healthcare systems for planning, healthcare delivery efficien
Is Frailty More than an Aggregate of Measures Indicating Vulnerability?

- Biological perspective
 - Common underlying pathophysiologic basis of which physical and cognitive decline are clinical manifestations?
Is Frailty More than a Phenotype/Aggregate of Measures Indicating Vulnerability?

Frailty: Increased Vulnerability

Increased Risk of Adverse Outcomes

Main Goal: Risk Prediction
Frailty in Older Adults

• Dominant theme in Geriatrics
• Prevention and treatment of frailty in older adults has been recognized as a cornerstone of geriatric medicine
• Health status heterogeneity not explained by age, diseases, or even traditional measures of disability
• Function, quality of life
• Compression of morbidity in aging societies
• Increasing attention in other disciplines
Frailty in Older Adults

- Context/timeline (my own – individualize presentation)
- Katz ADL
- Falls –
- Fiatarone
- SPPB
- Linda’s seminar
- Fried paper
- OAIC Pepper Center
Frailty in Older Adults

- Enhanced vulnerability
 - Increased risk of major adverse outcomes
 - Disability
 - Healthcare utilization
 - ER visits, recurrent hospitalization, NH admission
 - Mortality

- Resilience Spectrum
Frailty in Older Adults

• Not the same as aging
 – Frailty \neq aging,
 – Frailty \neq “normal” age-related functional decline
 – Frailty as a state of accelerated aging, decline

• Thus, potentially preventable
Frailty in Older Adults

• Dominant theme in Geriatrics
 – Compression of morbidity in aging societies

• Enhanced vulnerability
 – Adverse Outcomes
 – Disability
 – Healthcare utilization
 • ER visits, recurrent hospitalization, LoS, NH admission
 – Mortality
 – Health status heterogeneity not explained by chronologic age or diseases
Frailty in Older Adults

- Context/timeline (my own – individualize presentation)
- Katz ADL
- Falls –
- Fiatarone
- SPPB
- Linda’s seminar
- Fried paper
- OAIC Pepper Center
Frailty in Older Adults

• Dominant theme in Geriatrics
• Compression of morbidity in aging societies
 – Efforts above and beyond traditional diseases
 – Selected efforts
 (Clin Geriatr Med)
 – 1993:
 • 1994 - Tinetti et al. Multifactorial intervention for falls
 • 1994 - Fiatarone et al. Exercise for very elderly in LTC
 • 1995 – Guralnik et al. SPPB
 • 2001 – Fried et al. Frailty phenotype

Frailty in Older Adults

• Not the same as aging
 – Frailty ≠ aging,
 – Frailty ≠ “normal” age-related functional decline
 – Frailty as a state of accelerated aging, decline

• Thus, potentially preventable
Psychosocial Factors and Frailty

• **Individual**
 – Lower education
 – Financial strain
 – Lower positive affect
 – Loneliness
 – Lower levels of social support
 • Progression of frailty
 – Life space restriction

• **Neighborhood**
 – Less ethnically dense neighborhood
 – Deprived SES neighborhood
Frailty Research Agenda

• Test frailty interventions

• Limited knowledge, clinical trial data
 – Frailty prevention and/or reversal, and disability prevention and/or postponement

• Mostly indirect
 – Frailty components (e.g., strength) as targets and frailty outcomes (e.g., mobility disability)

• Most robust evidence to reduce vulnerability
 – Exercise; i.e., strength and aerobic

http://www.frailomic.org/
Sarcopenia is central to frailty
 – Key clinical manifestation
 – Shared mechanisms
 – Key intervention target for frailty prevention

Assuming sarcopenia, frailty, and disability have independent added values in primary care setting
 – Epidemiologic research to explore integration of assessment for frailty, sarcopenia, and disability
Frailty Research Agenda

• Comprehensive Geriatric Assessment
• Sarcopenia is central to frailty
• Loss of muscle mass
 – Decrease in Type I muscle fibers; muscle atrophy
• Decrease in strength/decade:
 – 60-79: 15%
 – >80: 30%
• Results in decreased power, walking speed

Evans; Fiatarone; Roberts; DeLateur; Buchner
Conclusion

• Comprehensive geriatrics management approaches
• Burdened in the past
• CGA in the 90’s
• Falls more recently
• Need to identify those who may benefit from comprehensive geriatric assessment
• What is the best approach – core components –
• What should the desired outcomes be?