

Prevalence of dementia

World Population Aging

Dementia A Forgotten Diagnosis

- Screening and evaluation of 3954 patients, aged 60 + years, followed in a primary care clinic
 - Mild dementia 10,5%
 - Moderate to severe dementia 5,2%
- Cases recognized by the primary physician
 - Mild dementia 3,2%
 - Moderate to severe dementia 23,5%

Dementia A Forgotten Diagnosis

- Individuals aged 64+ years living in Lieto, Finland. Screening and evaluation of 1260 people (82% participation)
 - 112 patients with dementia identified
- Cases documented by the primary physician
 - Mild dementia 33%
 - Moderate dementia 46%
 - Severe dementia 73%

Cognitive Deficits Clues

- Decrease in activities/hobbies
- Difficulties keeping appointments
- Difficulties with IADL
 - Telephone
 - Public transport
 - Finances
 - Medication

Cognitive Deficits Clues

 Could nutritional status be an early clue to the development of dementia?

Städt. Irren-Anstalt Frankfurt a. M.

Sec

Aerztliche Acten

über

Auguste 2

geties

Religion: reformict

Los, No.	Antgenommen	Kothasen
1	um 25.080 cember 1901	am —
2.		· make the min /
3.		
4		
8.		
0.		
7.		/ 45
8.	X	
9.	- 111	
. 10.	. /	
1L		
128.		
	Gesterben am S	April 1908.

Auguste D (1906)

Aging brain

Superman in his later years

Alzheimer's Disease Clinical Characteristics

- Insidious onset
- Slow progression
- No focal neurological findings

Normal brain aging and Alzheimer's Disease: Macroscopic findings

Normal brain aging is characterized by no or mild macroscopic cerebral atrophy in the absence of significant cognitive deterioration. Conversely, Alzheimer's Disease (AD) cases show, as a rule, a severe cortical atrophy involving predominantly the temporal, frontal, and parietal lobes.

Fig. Leg. (a, b): Left cerebral hemisphere in two 78 year old patients. Note the massive cerebral atrophy in the patient with AD (a) compared to the non-demented patient (b).

Alzheimer et Corrélations Clinicopathologiques Stades de Braak et CDR

Correlation between clinical severity (CDR) and neuropathological staging -Univariate Model-

• NFT staging accounted for 26.5% of the variability in clinical severity, Abeta protein deposition staging accounted for 13.0% and age for 4.4%

Correlation between clinical severity (CDR) and neuropathological staging -Multivariate Model-

• NFT and age together accounted for 27.2% of the variability in CDR scores

 the addition of Abeta-protein staging to the model could only explain an extra 2.9% of the clinical variability

Vascular Dementia Clinical Characteristics

Vascular Dementia

- Abrupt onset
- Stepwise deterioration
- Focal neurologic findings
- History of stroke

Alzheimer

Neuropsychological Profile

- Impaired attention, concentration and executive function
- Memory is less impaired than in AD
- Improved retrieval with cueing

- The neuropsychological profile is not specific for VaD
- Studies did not include neuropathological verification

Vascular Dementia Diagnosis

Dementia

Evidence of cerebrovascular pathology

Link between the two

Post Stroke Dementia

- Vascular dementia is 4 to 10 times more common in individuals who have suffered a stroke
- Increased risk of dementia in the months following a stroke (1/4 of the patients are demented 3 months post CVA)

Post Stroke Dementia

Auguste D (1906)

Mixed Dementia First Mention

- 1962: Senile Mixed Dementia (Delay et Brion)
 - Co-existence of vascular and degenerative lesions in a demented person.

Mixed Dementia Neuropathological Studies

MRC CFAS 209 autopsies

- Mean age at death 85 years (men) and 86 years (women)
- cerebrovascular pathology (hemorrhage, infarct, lacunes, small vessel disease) 78%
- NFT or SP: 70%

Cognition and NFT counts in elderly individuals with and without vascular lesions

Conceptual Challenges

- Do all ischemic lesions affect cognition?
- What characteristics are most important?
 - Type
 - Size
 - Location

Conceptual Challenges

- How do we interpret the impact of different ischemic lesions on cognition
 - Hemorrhages
 - Macroscopic infarcts
 - Lacunes
 - Microscopic infarcts
 - Gliosis (focal, diffuse)
 - White matter disease (periventricular or deep)

Cognition and Infarct Size

• A volume of damaged cerebral tissue > 50cc nearly always results in dementia (J Neurol Sci 1968; 7: 331)

Cognition and Infarct Size

- Cognitive decline rate was no different in patients with AD and infarcts < 10cc compared to cases with AD and no infarcts (Arch Neurol 2000;57:1474 and Arch Neurol 2001; 58:250)
- Microvascular lesions may be greater determinants of VaD than macrovascular lesions (Ann NY Acad Sci 2000;903:239)

Study Population

- 45 autopsied cases
 - with microscopic ischemic lesions
 - no macroscopic ischemic lesions
 - no significant NFT pathology (Braak stages I and II)
 - no other central nervous system disorders (i.e., tumors, Parkinson disease, Lewy body disease)
- Cognitive function assessed by CDR
 - No dementia: 13 cases
 - Questionable dementia: 16 cases
 - Dementia: 16 cases

Clinical Variability Explained by Each Lesion – Univariate Model

Age	5.4%	P<0.05
A beta deposition stage	8.0%	P<0.05
Microinfarcts	36.1%	P<0.01
Periventricular white matter lesions	10.6%	P<0.01
Deep white matter lesions	4.6%	P<0.05
Focal gliosis	_	NS
Diffuse gliosis	_	NS

Stroke 2004;35:410

Clinical Variability Explained by the Various Lesions – Multivariate Model

- Age and A beta stage: 10.4%
- Age and A beta stage and MI: 30.3% (+ 19.9%)
- Age and A beta stage and PVD: 20,1% (+9.7%)
- Age and A beta stage and DWMD: 15.8% (+5.4%)
- Age and A beta stage and Combined Ischemia Score: 38.2% (+27.8%)

Lacunes and Cognition in Brain Aging

Study Population

- 47 autopsied cases
 - with no or minimal microscopic ischemic lesions
 - no macroscopic ischemic lesions other than lacunes
 - no significant NFT pathology (Braak stages I and II)
 - no other central nervous system disorders (i.e., tumors, Parkinson disease, Lewy body disease)
- Cognitive function assessed by CDR
 - No dementia: 15 cases
 - Questionable dementia: 18 cases
 - Dementia: 14 cases

Clinical Variability Explained by Each Lesion – Univariate Model

Age	_	NS
A beta deposition stage	6.7%	P<0.01
Basal ganglia lacunes	17.2%	P<0.01
Thalamic lacunes	13.2%	P<0.01
Deep white matter lacunes (frontal, temporal, parietal)	-	NS

Cortical LB

HE

anti-0.-synuclein

anti-ubiquitin

Lewy Body Dementia

- Progressive impairment of cognitive function:
 - memory (70% des cas)
 - Slowing, attention deficits
 - fluctuations

Lewy Body Dementia

- Extrapyramidal syndrome
 - Moderate and symetrical
 - -Poor response to L-dopa
 - -Great sensitivity to neuroleptics

Lewy Body Dementia

- Visual hallucinations (80% of the case)
 - persistent
 - complex
 - criticized

Correlation between LB scores and CDR stages

Areas	Spearman's coefficient	Statistical significance
	0.48	P < 0.01
21	0.53	P < 0.005
24	0.60	P < 0.001
41	0.52	P < 0.005
Entorhinal	0.69	P < 0.001
Total	0.71	P < 0.001

Acta Neuropathologica 2003;106:83

Dementia In Older Populations

- Several different types of dementia
- Different clinical presentations
- Different pathological correlates
- Different and many times unkown underlying pathophysiological mechanisms

Weight Loss And AD

Patients and methods

- mild to moderate AD patients (N=362) and controls (N=317) with two or more weight measurements per year
- the average follow up was > 2 years

Results

- nearly twice as many AD patients experienced weight loss of 5% or more when compared to controls (men P=. 003; women, P=.001)
- in a multivariate model, a diagnosis of AD remained a significant predictor of ≥ 5% weight loss (P<<0.001)

Weight Loss And AD

- Risk of weight loss increases with dementia severity
- Weight loss is not confined to severe cases
- Some cases gain weight

J Am Geriatr Soc 1998;46;1223 Am J Clin Nutr 2000;71:637S

Weight Change and Mortality in AD

Percent weight change

AD and Weight Loss A Multifactorial Process

- Social supports
- Changes in taste and smell
- Affective disorders
- Behavioural disorders
- Functional Impairments
- Swallowing Difficulties
- Medications
- Co-Morbidities

AD, Feeding Difficulties and Caregiver Burden

- 224 community dwelling AD patients and their caregivers
- One year follow up
- Feeding difficulties at baseline related to AD severity
- Increase in feeding difficulties over 1 year strongly related to caregiver burden

AD, Weight and Acetylcholinesterase Inhibitors

	Galantamine 24mg	Galantamine 12mg	Placebo
Weight loss (kg) over 5 months	1.3	0.5	0.1

Caloric Intake and AD

- 51 AD and 27 « controls »
- 3 day food intake diary (foods weighed)
- AD cases weighed less and had poorer nutritional status
- AD cases did not eat less calories
- AD cases had less physical activity

Folate And Vitamin B12

- Most studies report similar B12 levels in AD and controls
- MMA and Homocystein higher in AD than controls
- Varying results for serum folate, RBC folate lower in AD

J Gerontol Med Sci 1997;52A:M76

Arch Neurol 1998;55:1449

J Gerontol Med Sci 2001;56A:M675

Am J Clin Nutr 2004;80:114

Micronutrients, Trace Elements And AD

- 35 « patients »
 - Controls (11), CIND (8), AD (8), VaD (8)
 - Low Se, Co and Cr in CIND, AD and VaD
 - Increased Cu in AD and VaD
 - Increased aluminium in AD
- 44 AD patients received either supplements or supplements + micronutrients (Mg, Zn, Arginine, Cu, vit. C E B12, folate) for 6 months
 - No difference in cognition
 - No difference in nutritional status

Fish and AD

• Fish consumption once a week or more decreases AD risk by 60% over approximately 4 years

J Am Geriatr Soc 2003;51:1143

Weight Change and AD

- Older community-dwelling men (N=134) and women (N=165) were followed for 20 years before they were diagnosed as cognitively intact or demented.
- Weight was measured at three clinic visits between 1972-74, 1984-87, 1990-93

Weight Change and AD

- Patients and methods
 - older community-dwelling men (N=134) and women (N=165) were followed for 20 years before they were diagnosed as cognitively intact or demented.
 - weight was measured at three clinic visits between 1972-74, 1984-87, 1990-93
- Results
 - 50% of men and women who developed dementia had lost 5 kg since their first evaluation 20 years previoulsy compared with about 25% of subjects who were cognitively intact.

Paquid Study BMI and Development of Dementia

Table 2 Incidence of dementia during follow-up according to initial body mass index

	BMI category				
	< 21	21–22	23-26	≥ 27	Total % (n)
Incidence rate of dementia					
*At 1 year: % (n)	1.7(5)	0.9(3)	0.8(6)	0.9(4)	1.0 (18)
→ At 3 years: % (n)	6.1(22)	5.0 (20)	2.8 (26)	2.9 (17)	3.7 (85)
At 5 years: % (n)	4.3 (13)	1.9(7)	2.9 (24)	1.6 (8)	2.6 (52)
At 8 years: % (n)	5.1 (11)	5.1 (14)	4.2 (27)	3.7 (14)	4.4 (66)

^{*} In the Gironde region only.

BMI = body mass index.

BMI and Development of Dementia

- 392 non demented individuals followed from age 70 to 88 years
- Women who developed dementia between 79 and 88 had higher BMI at age 70 (27.7 vs 25.7 p=0.007), 75 (27.9 vs. 25.1 p<0.01) and 79 (26.9 vs. 25.0 p<0.02)

BMI and Leptin levels in AD and VaD

16 VaD:

MMSE :15

16 AD:

MMSE: 13,5

Leptin Levels and Circadian Rhythm in AD (n=5) and Aged Controls (n=5)

	AD 3F/2H	Controls 3F/2H
Age	76,8±2,3	75,2±3,3
BMI	24,3 ±1,2	24 ±1,8
Serum leptin (ng/ml)	11,6 ±3,3	14,3 ±6,2
% Variation in leptin levels (3AM/6.30 AM)	52 ±16 p=0,034	26 ±6 p=0,011

Leptin Circadian rhythm in AD (n=5) and Aged Controls (n=5)

Cortisol and Leptin in AD and Controls

5 controls

5 AD

Similar BMI in both groups

Olsson, et al., Biol Psychiatry, 1998

Glucose Intolerance and Cognitive Function

	No GInt (n=506)	GInt (n=80)	p value
Age (années)	73,3±2,9	72,9± 3,0	ns
Education	7,0±3,6	6,6±3,8	ns
ВМІ	26,3±3,9	28,7±5,3	<0,001
Blood glucose (mmol/l)	5,4±0,5	6,0±0,6	<0,001
Insulin levels (pmol/l)	62,4±31,2	90,6±1,0	<0,001
MMSE	26,6±2,3	25,9±3,0	0,012
G&B*	23,5±11,8	22,1±22,12,6	0,026

^{*} Grober & Buschke

Insulin and AD

25 AD

100-

80

60

40

20

Normal

Mean age: 71.2 years

A. True Plasma Insulin (pmol/l)

Mild AD

Moderate/

Severe AD

14 controls

Mean age:72.4 years

Tube feeding

Tube Feeding in Advanced Dementia

- Does not prolong life in hospitalized patients or nursing home residents
- No clear evidence for decreased risk of aspiration pneumonia
- No evidence for increased patient comfort (restraints)

NEJM 2000;342:206 Arch Int Med 2001;161:594

Nutrition and Dementia Conclusions

- All dementias are not equivalent, results for AD cannot be automatically extrapolated to all other dementias
- Weight loss is more common in AD than aged matched controls and is associated with increased mortality
- Weight loss is multifactorial and pathophysiological mechanisms are not well known
- Weight loss may precede the onset of AD (but also obesity)
- Decisions regarding tube feeding should take into account published data and ethical principles

Correlation between clinical severity (CDR) and neuropathological staging -Univariate Model-

• NFT staging accounted for 26.5% of the variability in clinical severity, Abeta protein deposition staging accounted for 13.0% and age for 4.4%

Correlation between clinical severity (CDR) and neuropathological staging -Multivariate Model-

• NFT and age together accounted for 27.2% of the variability in CDR scores

• the addition of Abeta-protein staging to the model could only explain an extra 2.9% of the clinical variability

Vascular Dementia Diagnostic criteria

- Hachinski Ischemic Score, Loeb, Rosen
- DSM-IV
- ICD 10
- NINDS-AIREN
- ADDTC

Vascular Dementia Criteria Clinicopathological Correlations

	Sensitivity	Specificity
ADDTC possible	0.70	0.78
NINDS-AIREN possible	0.55	0.84
DSM-IV	0.50	0.84
Hachinski Ischemic Scale	0.43	0.88
ADDTC probable	0.25	0.91
NINDS-AIREN probable	0.20	0.93
ICD-10	0.20	0.94

Vascular lesions and Cognition In Mixed Cases

- Individuals with AD neuropathology have a lower MMS if infarcts or lacunes are present
- The presence of vascular lesions decreases cognitive performance in early stages of AD
- For an identical clinical severity, AD lesions are decreased in cases with vascular lesions

JAMA 1997;2777:815

Lancet 1999; 354:919

Acta Neuropathol 2002;103:481

Microinfarcts

Demyelination

Cognition and Infarct Size Methodological Issues

- Concomitant AD pathology may mask the consequences of microscopic ischemic lesions
- Ischemic lesions are heterogenous and different types of lesions may have different cognitive impacts
- Ischemic lesions can be diffuse, locations vary and assessment should thus be performed bilaterally in areas that are likely to be involved in cognition

Vascular Lesions and Dementia

- Multi-infarct dementia
- Single infarct dementia
- Small vessel disease
- Hypoperfusion
- Hemorrhage

Cognitive Deficits Screening

- MMS
- Clock drawing

Differential Diagnosis of Cognitive Impairment

Mixed Dementia

• Presence of both AD and vascular lesions that have clinical consequences on cognitive function.